1.Look for the rules and complete the following patterns.

(a) 52, 57, 62, 67, **72 , 77 ,82, 87 **

Explanation: Difference between Term 1 and Term 2 =57-52=5

Difference between Term 2 and Term 3= 62-57=5 and so on ,

clearly, a pattern is there where each term is previous term plus five.

So 67+5=72 , 72+5=77 and so on

(b) 1, 3, 5, 7,** 9, 11, 13 ,15**

Explanation: Difference between Term 2 and Term 1 =3-1=2

Difference between Term 3 and Term 2= 5-3=2 and so on

clearly, a pattern is there where each term is the previous term plus two.

So 7+2=9 , 9+2=11 , 11+2=13 , 13+2=15

(c) 30, 27, 24, 21, **18 , 15 , 12 ,9 **

Explanation: Difference between Term 1 and Term 2 =30-27=3

Difference between Term 2 and Term 3= 27-24=3 and so on

clearly, a pattern is there where difference between consecutive term is three.

So 21-3=18 , 18-3=15, 15-3=12 ,12-3=9

(d) 100, 90, 80, 70, **60 ,50 ,40,30**

Clearly, a pattern is there where the difference between consecutive terms is 10.

(e) 1, 3, 7, 13,**21,31,43,57**

Term 2-Term 1=3-1 =2

Term 3-Term 2=7-3 =4

Term 4-Term 3=13-7=6

The difference between consecutive terms is increasing by 2.

So Term 5- Term 4 should be 8, Term 6- Term 5 should be 10, Term 7- Term 6 should be 12 and so on the series will go on.

(f) 11, 22, 33, **44, 55 ,66 77 ,88 **

Clearly series is multiple of 11 with the first term is 11

(g) 2, 4, 8, 16, 32, **64, 128, 256,512**

Clearly, each term in the series is twice the previous term.

So 32*2=64 ,64*2=128 ,128*2=256 and 256*2=512

(h) 99, 101, 103, 105, **107 , 109,111 ,113**

Clearly, there is a pattern in the series, where the difference between consecutive terms is 2.

So 105+2=107, 107+2=109 , 109+2 =111 ,111+2=113

(i) 9, 109, 209, **309, 409,509,609**

Clearly, there is a pattern in the series, where the difference between consecutive terms is 100.

(j) 586, 686, 786, **886 ,996,1086,1186**

Clearly, there is a pattern in the series, where the difference between consecutive terms is 100.